
SaunaFS Documentation
Version: 4.0.8

Table of contents:
SaunaFS documentation overview

Introduction​

About this document​

Architectural overview of SaunaFS​

Important notes​

Hardware recommendations​

Manual pages​

Systemd services​

Quick overview of SaunaFS​

Getting started

Creating the required directories

Setting up on localhost (Optional)

Configuring and running master and chunkserver

Mounting the client

Wrapping up

Windows client

General options​

Extended general options​

Example 1​

Example 2​

Example 3​

Security/permissions related options​

Readahead related options​

Persistent mount options​

Example 1​

Example 2​

Example 3​

Example 4​

Configuration file option​

Example​

Side note​

FAQs​

Why can't AJA see my S: drive, only C:?​

NFS client

Installing NFS-Ganesha​

Installing and setup SaunaFS FSAL​

Connecting NFS clients to SaunaFS clusters​

NFS protocol version, client's authorization, and multiple exports​

Administration Guide

Installation

Debian based distributions​

Source installation​

Network setup

Client connection to SaunaFS SAN​

DNS​

Network Topology​

Service configuration

Operating Systems​

File systems​

Master​

Shadow master​

Chunkserver​

Metalogger​

Replication

Configuring Goals​

Goal Definitions​

Viewing and Setting Goals​

Setting up EC​

Logs and logging

Metadata logs​

Regular syslog (journalctl)​

Client site operation logs (oplog)​

Basic checks

Check the speed of your network interface

Checking the throughput of your network

Dev Guide

Development Environment​

Editors​

Building​

Sharing the source code with the VM​

Dependencies/Installing Tests​

Compiling​

Configuring SaunaFS/tests​

Running the tests​

Submitting Pull Requests​

Git specific settings​

Code Style​

Ignore revisions​

Introduction

Documentation licensing information​

Windows Client licensing information

SaunaFS (except its documentation and Windows Client) licensing information

Version: 4.0.8

SaunaFS documentation overview

Introduction

About this document

This SaunaFS documentation, as of 29th December 2023, is in an early draft stage and primarily builds

upon pre-existing documentation. This may lead to certain details being absent, incorrect, or outdated. In

cases of confusion or questions, reaching out to the development team is advised.

Despite its preliminary status, this document aims to provide sufficient information for the initial setup and

operation of SaunaFS. It includes essential details and a quick start guide to facilitate basic configurations.

Feedback is highly valued at this stage. It not only aids in enhancing this document for future reference

but also assists others in their SaunaFS setup process.

Please note that SaunaFS software, Windows Client software, and this documentation are all licensed

separately under different licensing formats. For more information about the licensing terms for each

component, please see the Licensing section of this documentation.

We appreciate your choice to use SaunaFS.

Architectural overview of SaunaFS

https://docs.saunafs.com/licensing

Important notes

Hardware recommendations

There are no fixed requirements for hardware, although, for better results it is recommended to have:

10 or 25 GbE networking

Bonding (e.g., MC-LAG) across the switches for redundant setup

Nodes with unified hardware configurations

Sample hardware configuration for node:

1x Intel® Xeon® Silver or higher CPU (or AMD equivalent)

4x 16GB DDR4 ECC Registered DIMM

2x 240GB Enterprise SSD

10x Enterprise HDD

1x Network Interface Card 25GbE Dual-Port

If unified nodes cannot be provided, at least Master/Shadow nodes should have hardware configuration

like sample setup.

Alternatively, you can use the hardware sizer application to calculate hardware requirements for your

specific needs: https://diaway.com/saunafs#calc

The suggestion for unified hardware configuration is drawn from the future updates that will introduce the

setup with multiple master servers. It is our current effort to introduce distributed metadata enabled

architecture to circumvent the limitations imposed by the RAM capacity of a single node within a

namespace and also to introduce parallel access to metadata.

The following table will give the estimated amount of RAM occupied by the metadata correlated to the

number of files in SaunaFS.

Number of files all data structures overhead

1 500 B

1000 500 KB

1 000 000 500 MB

100 000 000 50 GB

1 000 000 000 500 GB

Manual pages

This document does not elaborate on every command or configuration option. For comprehensive

information, manual (man) files are provided in the Debian packages for both commands and

configuration files.

To view a man file for a command, e.g., saunafs-admin:

man saunafs-admin

https://diaway.com/saunafs#calc

To view a man file for a configuration, e.g., sfsmaster.cfg:

man sfsmaster.cfg

Systemd services

The Debian packages include systemd services for initiating various SaunaFS services. This document

assumes the use of these services in its examples.

For systems without systemd, or those choosing not to use it, examining the service files for custom setup

or direct command usage is recommended.

Quick overview of SaunaFS
SaunaFS is a distributed POSIX file system inspired by the Google File System, comprising Metadata

Servers (Master, Shadows, Metaloggers), Data Servers (Chunkservers), and Clients (supporting multiple

operating systems and NFS). It employs a chunk-based storage architecture, segmenting files into 64 MiB

chunks subdivided into 64 KiB blocks, each with 4 bytes of CRC (Cyclic Redundancy Check) for data

integrity.

The write process in SaunaFS involves clients requesting the Master server for suitable Chunkservers for

file chunk storage. Data is transferred directly to Chunkservers in 64 KiB blocks, with CRC verification by

Chunkservers and subsequent metadata updates. SaunaFS utilizes Reed-Solomon erasure coding for

redundancy, enhancing data integrity and availability. For instance, a 65 MiB file is segmented into four 16

MiB data parts and two parity parts.

The system also prioritizes data resiliency through data scrubbing and CRC32 checksum verification.

Additional features include instant copy-on-write snapshots, efficient metadata logging, and hardware

integration without downtime.

Version: 4.0.8

Getting started
Get the Debian packages from the repository. See the installation guide for more details, then return here.

This quick-start will make some assumptions:

1. You want to quickly setup SaunaFS to test it.

2. You have a single machine to set it up.

The minimal setup required is a master server, a chunkserver and a client. We will set it up on a single

machine. However note that this setup is NOT SUPPORTED, this is purely for testing it quickly with little

effort. In actuality, you probably want a different setup, with master, client and chunkserver(s) on their

own dedicated machines. Still, this guide should help you get an idea how to get started with your own

setup. The admininstration guide and man pages will have more details.

Note that currently SaunaFS servers don't work on localhost (this might be changed in the future), so

you’ll need to do some network setup if you are planning on running both master and chunkserver on the

same network address. This will be covered in the guide, however it can also useful for developers for

setting up local testing environments.

https://repo.saunafs.com/repository/saunafs-ubuntu-22.04-dev/
https://docs.saunafs.com/administration-guide/installation
https://docs.saunafs.com/administration-guide

Version: 4.0.8

Creating the required directories
For the purposes of this setup, we will set up everything in the localhost as a demonstration. We need

three directories: Two to store data, and one to access it. In a real-world scenario, the two directories

storing data would be dedicated drives, but for now we will set them up as simple directories.

You need to set the correct user and permissions for the storage directories. The user required can be

changed in the configuration files, but the default is saunafs

You should also set the ownership of the client folder to the user you are using, so you can easily test if

it’s working later:

mkdir /mnt/hd1 # Storage 1
mkdir /mnt/hd2 # Storage 2
mkdir /mnt/client # Client

chown saunafs:saunafs /mnt/hd* # NB: This assumes no other files that start with
hd exist in the directory
chmod 600 /mnt/hd*

chown $USER:$USER /mnt/client/

Version: 4.0.8

Setting up on localhost (Optional)
Chunkservers and master will not work with each other if running on the same IP address, so we need to

make sure that they can (You can skip this if you are not running chunkservers on the same IP address as

master.)

First, add an identifier to for master in the /etc/hosts file:

It can be any IP address, but preferably it should be something private and unused.

Next, add the new IP address to your loopback device

Note that a loopback will significantly impact performance. However, you shouldn’t use localhost for

production anyway. This will apply temporarily until the next boot.

10.33.33.33 sfsmaster

sudo ip a a 10.33.33.33 dev lo

Version: 4.0.8

Configuring and running master
and chunkserver
Copy the configuration files

In the new sfshdd.cfg, uncomment the lines with /mnt/hd1 and /mnt/hd2 This should be enough to work,

but if you named your master host something other than sfsmaster (or if you are running master on

another IP), you also need to uncomment this line in /etc/saunafs/sfschunkserver.cfg and change the value

to something else:

MASTER_HOST = <master ip address/name>

Start both master server and chunkserver

For the first run of master, you will need an empty metadata file for master, otherwise it will not start.

METADATA

Please note that usage of cp -biv is for avoiding potential existing metadata overwriting. There is a

risk that one will execute this comand (eg. from history) on existing running instalation of SaunaFS.

They should start successfully.

sudo cp /usr/share/doc/saunafs-master/examples/sfsmaster.cfg /etc/saunafs/
sudo cp /usr/share/doc/saunafs-chunkserver/examples/sfschunkserver.cfg
/etc/saunafs/
sudo cp /usr/share/doc/saunafs-chunkserver/examples/sfshdd.cfg /etc/saunafs/

cp -vib /var/lib/saunafs/metadata.sfs.empty /var/lib/saunafs/metadata.sfs

sudo systemctl start saunafs-master
sudo systemctl start saunafs-chunkserver

Version: 4.0.8

Mounting the client
Finally, you need to mount the client. You can use sfsmount3 (sfsmount is deprecated and will be removed

in a future release) to start using SaunaFS:

If you are not using the sfsmaster hostname IP address, you can specify the master with this:

sudo sfsmount3 /mnt/client/

sudo sfsmount3 <master IP> /mnt/client/

sudo chown $USER:$USER /mnt/client/

Version: 4.0.8

Wrapping up
If all goes well, you should be able to read and write to the /mnt/client/ (and thus to SaunaFS) with ease. If

it’s taking a long time to write and/or read the directory, then the chunkserver is likely not cooperating with

the master. Check the logs for both master and chunkserver (using journalctl).

This was a short but simple setup of SaunaFS. While simple, this is not very redundant nor is it the setup

you are looking for. For advanced setups, look at the Admin Guide next.

If you need help or advice, come, and join us at the SaunaFS Slack!

https://docs.saunafs.com/administration-guide
https://saunafs.slack.com/

Version: 4.0.8

Windows client
The current SaunaFS Windows Client (1.0.0) consists of the Command Line Interface (CLI) client. Install

our client from the provided exe file. The CLI client is in “C:\Program Files\SaunaFS\saunafscli.exe” on

default installation path.

The CLI client works as an executable that receives commands passed by command line, like from CMD or

PowerShell. After moving the console to the installation folder, you may start using the app.

Windows Client is licensed separately from the other parts of the SaunaFS software. For more information

about the licensing terms for Windows Client, please see the Licensing section of this documentation.

General options

Option Description

-H HOST | -o

sfsmaster=HOST

define sfsmaster location (default: sfsmaster). It defines the IP of the

master of the SaunaFS system, i.e. it defines to which system the

client is connecting to.

-P PORT | -o sfsport=PORT define sfsmaster port number (default: 9421).

-D LETTER | -o

sfsdriveletter=LETTER
mount filesystem as drive with letter LETTER (default: Z).

For instance, the command:

should display a new local drive mounted in the letter S. The IP 192.168.56.1 must host a SaunaFS master

server listening for incoming client communications on port 9521.

Extended general options

saunafscli -H 192.168.56.1 -P 9521 -D S

https://docs.saunafs.com/licensing/windows-client-licensing-information

Option Description

-S PATH | -o

sfssubfolder=PATH

define subfolder to mount as root (default: /). The storage could have

a number of folders, this option allows the user to display inside a

mounted drive only the content of one of those specific folders.

-o sfsvolumelabel=NAME mounted filesystem will appear with label NAME.

-o sfsuncpath=PATH
mount filesystem as a network drive with UNC path PATH. PATH

format is SERVER/DRIVE.

-o

sfsmountingsubfolder=PATH

mount filesystem at a specified PATH folder. When this option is set

the drive letter option must not be set.

The pairs of options sfsvolumelabel-sfsuncpath and sfsuncpath-sfsmountingsubfolder and are mutually

exclusive. Please only use one of the two while writing mount command because some options will be

ignored.

Example 1

should display the following regular drive:

i.e. a regular drive labeled ProjectS and displaying only the contents of the folder “/data/ProjectS” of the

storage.

Example 2

saunafscli -H 192.168.56.1 -P 9521 -D S -S /data/ProjectS -o
sfsvolumelabel=ProjectS

should display the following drive:

i.e. a network drive on the desired UNC path.

Example 3

should create the “ProjectS” folder in the “C:\mnt” folder displaying the content of the storage.

Security/permissions related options

Option Description

-o sfspassword=PASSWORD authenticate to sfsmaster with password. (Raw password option)

-o sfsmd5pass=MD5
authenticate to sfsmaster using directly given md5 (only if

sfspassword is not defined).(Password after MD5 processing).

-p | --password | -o

askpassword

similar to '-o sfspassword=PASSWORD’ but show prompt and ask

user for password. Password won’t be displayed while typing it.

saunafscli -H 192.168.56.1 -P 9521 -D S -o sfsuncpath=storage/ProjectS

saunafscli -H 192.168.56.1 -P 9521 -o sfsmountingsubfolder=C:\\mnt -o
sfsvolumelabel=ProjectS

Option Description

-o

sfsdonotrememberpassword

do not remember password in memory - more secure, but when

session is lost then new session is created without password.

-o sfsuid=UID
set user id of the mounting user as UID (default behavior uses

WinFSP local mapping of Windows SID).

-o sfsgid=GID
set group id of the mounting user as GID (default behavior uses

WinFSP "No group" mapping).

-o sfsumaskfile=MASK

set permissions for newly created file (octal) (default: 002). This

option represents the unset file permission bits. So, for the default

setting the resulting file permission mask is 775.

-o sfsumaskdir=MASK
set permissions for newly created folder (octal) (default: 002). This

option is very much like sfsumaskfile option one.

Passwords can be set on the master side to provide layers of security to some specific paths of the

storage, the first four options of this group provide the users the tools to fulfill those security

requirements.

Current Windows Client does not support Active Directory and cannot provide a true translation from the

Windows context of users (client side) to the Linux context of users (master side). The sfsuid and sfsgid

options provide manual translation. Thus, the command

will mount the regular drive and all actions in the storage will be performed with the security clearance of

the user with uid 999 and gid 999, the default permission mask of the new created files will be 666, which

means full permissions to every user except execution ones and the default permission mask of the new

created directories will be 754, which means full permissions to creator of the directory, no write

permission for other users sharing group ID and no execution and write permissions for other users.

Default behavior of the sfsuid and sfsgid options uses WinFSP local mappings of the Windows SID. It

means that if this option is not set some weird values will be seen. For instance, local users are mapped to

saunafscli -H 192.168.56.1 -P 9521 -D S -o sfsuid=999 -o sfsgid=999 -o
sfsumaskfile=111 -o sfsumaskdir=023

UIDs higher than 3*2^16, Administrator user gets mapped to 544, System to 18 and the "No Group" is

represented with GID 197121.

Readahead related options

Option Description

-o cacheexpirationtime=MSEC
set timeout for read cache entries to be considered valid in

milliseconds (0 disables cache) (default: 1000).

-o

readaheadmaxwindowsize=KB

set max value of readahead window per single descriptor in

kibibytes (default: 65536).

-o readworkers=N define number of read workers (default: 30).

-o maxreadaheadrequests=N define number of readahead requests per inode (default: 5).

The previous options configure the readahead mechanism of the client. This mechanism improves the

client performance on read operations, especially on the sequential read operations. Default values

should work for most cases, but it can be tuned.

The cacheexpirationtime option could be increased if the reliability of a read of the files is high, i.e., the

files are not supposed to change shortly after a read. The read cache is kept in memory, so keep track of

the used RAM by the client and reduce the cacheexpirationtime if necessary. The readworkers option

configures the number of workers (threads) the client creates to read files, so depending on the number

of files read at the same time this number can go up or down. The maxreadaheadrequests option

configures how far the readahead mechanism should go when reading a file, so depending on the

expected kind of reads the client is supposed to do this number can go up (sequential reads) or down

(sparse reads). Please consider leaving default parameters if desired performance is achieved or there is

little data about the type of reads the client is going to do.

Persistent mount options

Option Description

-o sfsschedulestartmount=ID

mount the filesystem and schedule automount shortly after next

boot. ID only refers to some identifier for the scheduled mount, for

instance: Project1.

-o

sfsstartscheduledmount=ID
start a scheduled mount with the given ID.

-o sfsstopscheduledmount=ID stop the actual instance of the scheduled mount with the given ID.

-o

sfsdeletescheduledmount=ID
delete/deschedule the scheduled mount with the given ID.

-o sfslistscheduledmounts display ID, state, and original command line for scheduled mounts.

The persistent mount options allow client users to schedule automatic mount of the client shortly after the

boot of the Windows system is finished (around a minute). It also allows to start, stop and

delete/deschedule those configured mounts.

Current implementation requires running the commands using the first four of the previous options to use

an elevated (Admin) prompt. Those options use the Windows OS task scheduler and require that number

of permissions. Commands which do not involve those options can be run from regular prompt and must

be run from regular prompt if it is intended to mount a drive for the current user. The options:

sfsstartscheduledmount

sfsstopscheduledmount

sfsdeletescheduledmount

sfslistscheduledmounts

will ignore all other options provided in the command line, so it is recommended to only use that option.

Example 1

Command

saunafscli -o sfsschedulestartmount=ProjectS -H 192.168.56.1 -P 9521 -D S -o
sfsuncpath=storage/ProjectS

on elevated prompt will mount the drive with the provided options (like in the previous example) and

schedule to mount the same drive after boot. If that command is run on regular prompt will receive

permission denied error.

Example 2

on elevated prompt appear to successfully mount the client but won’t show the drive. If that command is

run on regular prompt, it will get the already described effect.

Example 3

will stop the already running mount.

Example 4

if following the previous commands should show following:

Configuration file option

-c CFGFILE -o sfscfgfile=CFGFILE load some mount options from external file.

Example

saunafscli -H 192.168.56.1 -P 9521 -D S -o sfsuncpath=storage/ProjectS

saunafscli -o sfsstopscheduledmount=ProjectS

saunafscli -o sfslistscheduledmounts

saunafscli -c C:\\ProjectS.cfg

loads mount options from that file, if exists, and mounts the client using those options. Example

configuration file:

The resulting mount of this example config file will be the same as shown in the Example 2 under section

"Extended general options" shown as example.

Side note

The descriptions of previous options contain some italic and non-italic words. The italic description

appears on the help command response

The rest of the description has been added especially for the documentation. The command

displays the version info.

FAQs

Why can't AJA see my S: drive, only C:?

AJA only recognizes drives mounted as network drives. To ensure AJA can see your drives, you should

mount them using the -o sfsuncpath=PATH option. For example, use -o sfsuncpath=server/drive
to mount your drive as a network drive. Note that AJA does not recognize drives mounted as regular

drives from the SYSTEM user.

saunafscli –help

saunafscli -V

https://docs.saunafs.com/windows-client#example-2
https://docs.saunafs.com/windows-client#extended-general-options

Version: 4.0.8

NFS client
SaunaFS implements a File System Abstraction Layer (FSAL) for NFS Ganesha to allow connecting NFS

clients to the cluster.

NFS-Ganesha is an NFS v3, v4 and v4.1 fileserver that runs in user mode on most UNIX/Linux systems.

NFS-Ganesha is used by SaunaFS for offering NFS v3 and v4 services.

SaunaFS FSAL is compatible with most of the features provided by Ganesha and is capable of managing

classical goal replication and erasure coding. In the following sections will be covered the most important

steps to setup SaunaFS FSAL and basic Ganesha settings.

More information and documentation to setup other specific options and advanced setups for NFS-

Ganesha are available in the following link: https://github.com/nfs-ganesha/nfs-

ganesha/wiki/Configurationfile

Installing NFS-Ganesha
SaunaFS FSAL was developed for NFS-Ganesha v4.3. In the future, the goal is to add support for NFS-

Ganesha v5.5.

The package nfs-ganesha v4.3 is available in Ubuntu 23.04 (lunar) repositories. The easiest way to

install this package is to add (temporarily) Ubuntu 23.04 repositories to the file /etc/apt/sources.list and

install this package. After installing NFS-Ganesha, we recommend removing Ubuntu 23.04 repositories to

avoid conflicts with possibly outdated packages.

Below there is a list of Ubuntu 23.04 repositories that were tested in our environment to install nfs-

ganeshav4.3.

Repos Lunar Official
deb http://archive.ubuntu.com/ubuntu lunar main restricted universe multiverse
deb http://archive.ubuntu.com/ubuntu lunar-security main restricted universe
multiverse
deb http://archive.ubuntu.com/ubuntu lunar-updates main restricted universe
multiverse
deb http://archive.ubuntu.com/ubuntu lunar-proposed main restricted universe
multiverse

https://github.com/nfs-ganesha/nfs-ganesha
https://github.com/nfs-ganesha/nfs-ganesha/wiki/Configurationfile
https://github.com/nfs-ganesha/nfs-ganesha/wiki/Configurationfile

After updating the repositories, we update the packages of new repositories and install nfs-ganesha

package with the following commands:

HINT

It is recommended to install another FSAL like VFS (nfs-ganesha-vfs) to create the library folder

where the FSAL should be copied before starting nfs-ganesha.

In case it’s not possible to install nfs-ganesha from Ubuntu repositories, we need to download the source

code of Ganesha v4.3 from the official repository and build the binaries before installing. In that case, the

file COMPILING_HOWTO.txt can be useful for the building process.

Installing and setup SaunaFS FSAL
The next step is to install the packages for SaunaFS FSAL and its dependencies:

HINT

SaunaFS FSAL library (libfsalsaunafs.so) should be installed in Ganesha library path

(/usr/lib/x86_64-linux-gnu/ganesha/ in Ubuntu 22.04). Otherwise, when starting nfs-ganesha,

SaunaFS FSAL will not be loaded and NFS clients will not be capable of connecting to SaunaFS

cluster.

Below there is a basic /etc/ganesha/ganesha.conf example file to use SaunaFS FSAL:

deb http://archive.ubuntu.com/ubuntu lunar-backports main restricted universe
multiverse

apt update
apt install nfs-ganesha

apt install saunafs-lib-client saunafs-nfs-ganesha

###
The ganesha node connects to the saunafs master server
with the ip address 192.168.99.100:

https://github.com/nfs-ganesha/nfs-ganesha/archive/refs/tags/V4.3.zip
https://github.com/nfs-ganesha/nfs-ganesha/blob/next/src/COMPILING_HOWTO.txt

One important aspect to consider is the 'Name' value must be set to SaunaFS. Otherwise nfs-ganesha

will not use SaunaFS FSAL.

After finishing the setup of SaunaFS FSAL, nfs-ganesha needs to be enabled and started:

#
To work correctly, all that is required is an EXPORT
###

EXPORT
{
 # Export Id (mandatory, each EXPORT must have a unique Export_Id)
 Export_Id = 77;

 # Exported path (mandatory)
 Path = "/";

 # Pseudo Path (required for NFS v4)
 Pseudo = "/";

 # Required for access (default is None)
 # Could use CLIENT blocks instead
 Access_Type = RW;
 Squash = None;
 Attr_Expiration_Time = 0;

 # Exporting FSAL
 FSAL {
 Name = SaunaFS;
 # The address of the SaunaFS Master Server or Floating IP if using uRaft
 hostname = "192.168.99.100";
 # The port to connect to on the Master Server
 port = "9421";
 # How often to retry to connect
 io_retries = 5;
 cache_expiration_time_ms = 2500;
 }

 # Which NFS protocols to provide
 Protocols = 3, 4;
}

systemctl enable nfs-ganesha

Connecting NFS clients to SaunaFS clusters
Before connecting NFS clients to SaunaFS clusters, make sure package nfs-common is already installed.

This package contains programs like statd, showmount and mount.nfs that are needed for NFS clients to

connect successfully.

For connecting NFS clients to one SaunaFS cluster, we can use the following command:

The option vvvv is optional and enables verbose mode to see whether the mount command was

successful and other useful debug information.

The second parameter is the IP address assigned to the Ganesha server, followed by the export

(defined at ganesha.conf) to which we want to connect.

The third parameter is the local mount point defined to access (locally) to the export defined at the

ganesha.conf file.

Below, there is an example to connect a NFS client (locally) to NFS-Ganesha server installed at the same

workstation:

The folder /mnt/export1/ is the directory under which the NFS share will be mounted on the client

machine. This directory can be changed to any directory name.

Once NFS client is connected to the cluster, we can perform the following operations:

stat

readdir

create folders and files

remove dir and files

cat

systemctl start nfs-ganesha

mount -vvvv ganesha_server_ip:/ganesha_export /local_mountpoint

mount -vvvv localhost:/ /mnt/export1/

symbolic links

change permissions

copy files and folders

rename files and folders

NFS protocol version, client's authorization,
and multiple exports
NFS-Ganesha supports NFS v3, 4.0, 4.1, and 4.2. When connecting NFS clients to the cluster, it’s possible

to define a specific version of NFS to be used by the client. Below there are some examples to connect

NFS clients with different NFS versions:

NFS v3: mount -o nfsvers=3 localhost:/ /mnt/nfs3

NFS v4.1: mount -o v4.1 localhost:/ /mnt/nfs41

NFS v4.2 (default in Ubuntu 22.04): mount localhost:/ /mnt/nfs42

Another important step during configuration of an export is the list of clients authorized to access the

export. The following example shows different ways to allow clients to connect to a given export:

The list of clients is usually defined inside a CLIENT section at the ganesha.conf file. The most frequent

ways to authorize NFS clients are:

Specific IP address for a single client: Clients = 192.168.208.236;

All clients: Clients = *;

EXPORT
{
 …
 CLIENT
 {
 #Clients = 192.168.208.236;
 #Clients = *;
 #Clients = 192.168.208.0/24;
 #Clients = mfsmaster;
 }
 …
}

Specific subnet: Clients = 192.168.208.0/24.

Hostname of clients: Clients = nfsclient01;

NFS-Ganesha also allows to define multiple exports for the same namespace. The following example

shows the definition of multiple exports in the same ganesha.conf file.

EXPORT
{
 Attr_Expiration_Time = 0;
 Export_Id = 1;
 Path = /export1;
 Pseudo = /e1;
 Access_Type = RW;

 FSAL
 {
 Name = SaunaFS;
 hostname = localhost;
 port = ${saunafs_info_[matocl]};
 }

 Protocols = 3, 4;
}

EXPORT
{
 Attr_Expiration_Time = 0;
 Export_Id = 2;
 Path = /export2;
 Pseudo = /e2;
 Access_Type = RW;

 FSAL
 {
 Name = SaunaFS;
 hostname = localhost;
 port = ${saunafs_info_[matocl]};
 }

 Protocols = 3, 4;
}

EXPORT
{

The definition of multiple exports allows us to define different levels of access (RW, MDONLY, RO), which

guarantee a fine-grained level of permissions for different folders in the namespace.

The way to connect to multiple exports is the same as before, we only need to define a NFS directory for

each export.

 Attr_Expiration_Time = 0;
 Export_Id = 97;
 Path = /;
 Pseudo = /e97;
 Access_Type = MDONLY;

 FSAL
 {
 Name = SaunaFS;
 hostname = localhost;
 port = ${saunafs_info_[matocl]};
 }

 Protocols = 4;
}

EXPORT
{
 Attr_Expiration_Time = 0;
 Export_Id = 99;
 Path = /;
 Pseudo = /e99;
 Access_Type = RO;

 FSAL
 {
 Name = SaunaFS;
 hostname = localhost;
 port = ${saunafs_info_[matocl]};
 }

 Protocols = 4;
}

Version: 4.0.8

Administration Guide
Under Development

Version: 4.0.8

Installation

Debian based distributions
Import the public key used to sign the packages

It will create a new keyring file /usr/share/keyrings/saunafs-archive-keyring.gpg and import the

public key used to sign the packages.

NOTE

At the time of writing, the use of apt-key is deprecated.

You can verify the keyring file by running the following command:

Next, add our Debian/Ubuntu repository to the apt sources. Make sure that the command lsb_release is

installed.

Ubuntu:

#optionally install dirmngr
#apt install dirmngr
#mkdir $HOME/.gnupg
#or sudo mkdir /root/.gnupg

gpg --no-default-keyring \
 --keyring /usr/share/keyrings/saunafs-archive-keyring.gpg \
 --keyserver hkps://keyserver.ubuntu.com \
 --receive-keys 0xA80B96E2C79457D4

gpg --no-default-keyring \
 --keyring /usr/share/keyrings/saunafs-archive-keyring.gpg \
 --list-keys

https://opensource.com/article/22/9/deprecated-linux-apt-key
https://opensource.com/article/22/9/deprecated-linux-apt-key
https://opensource.com/article/22/9/deprecated-linux-apt-key

Update the package list

These packages are available on the Debian/Ubuntu repository:

saunafs-master – Master server

saunafs-chunkserver – Chunkserver

saunafs-client – Client (sfsmount)

saunafs-adm – Administration tools saunafs-admin

saunafs-cgi – SaunaFS CGI Monitor (deprecated)

saunafs-cgiserv – Simple CGI-capable HTTP server to run SaunaFS CGI Monitor (deprecated)

saunafs-metalogger – Metalogger server

saunafs-common – SaunaFS shared library, required by saunafs-master, saunafs-chunkserver and

saunafs-metalogger

saunafs-dbg – Debugging symbols for all the SaunaFS binaries

saunafs-uraft - High Availability solution based on RAFT algorithm (from version 3.13)

Source installation
Obtain the source

Go into the saunafs directory and create a build directory

sudo tee /etc/apt/sources.list.d/saunafs.list <<EOF
deb [arch=amd64 signed-by=/usr/share/keyrings/saunafs-archive-keyring.gpg]
https://repo.saunafs.com/repository/saunafs-ubuntu-22.04/ jammy main
EOF

sudo apt update

git clone https://github.com/leil-io/saunafs.git

cd saunafs
mkdir build

SaunaFS uses CMake as its build system. For a complete list of options check the developer's guide for

building, but these are the three most important options for installing:

DCMAKE_BUILD_TYPE=RelWithDebInfo - Build for release with debug symbols

DCMAKE_INSTALL_PREFIX=/usr/local - Where to install when make install is called (default is

/usr/local)

DENABLE_DOCS=ON - Build man docs

You might use the below commands to build SaunaFS:

Finally call make install:

NOTE

When building from source using this method, the version will default to 4.0.0-devel . This default

value is intended to avoid backward compatibility issues and to easily tag artifacts that are not

officially built by our CI.

cmake -B ./build \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo \
 -DCMAKE_INSTALL_PREFIX=/usr/local
 -G 'Unix Makefiles' \
 -DENABLE_DOCS=ON \
 -DENABLE_CLIENT_LIB=ON \
 -DENABLE_TESTS=ON \
 -DENABLE_WERROR=ON

nice make -C ./build -j$(nproc)

sudo make install

Version: 4.0.8

Network setup
We recommend setting up a static IP address for each SaunaFS server.

SaunaFS SAN (Storage Area Network) is a single IP access private network. This refers to the fact that

there is only one floating IP address that clients use to access the SAN. Floating in this case means, this IP

address can be assigned to different servers, which helps to improve performance and reliability.

Client connection to SaunaFS SAN

In general, there are two ways for a client to connect to SaunaFS SAN (both illustrated in the according

diagram):

1. Client is in external network (outside SaunaFS’s storage system's private network). In that case

connection can be routed to SAN with VPN or physical router device.

2. Client is in the same network. Client computer is located within the same network as the SaunaFS

storage system. However, this is not recommended for security reasons.

DNS

We do not recommend using DNS to resolve the IP addresses of the system. If something in the DNS

breaks, it could cause some critical services to not work properly.

Instead, assign the IP addresses a name in /etc/hosts.

Network Topology
The configuration of rack awareness in a SaunaFS network involves setting up the network topology in the

sfstopology.cfg file. This file specifies the topology using lines that include an ADDRESS and a SWITCH-

NUMBER. ADDRESS can be defined in various ways, including as a wildcard for all addresses, a single IP

address, an IP class with a network address and bits number or mask, or an IP range.

* all addresses

n.n.n.n single IP address

n.n.n.n/b IP class specified by network address and bits number

n.n.n.n/m.m.m.m IP class specified by network address and mask

f.f.f.f-t.t.t.t IP range specified by from-to addresses (inclusive)

The switch number is a positive 32-bit integer. The distances calculated from this configuration are used

to prioritize chunk servers during read/write operations based on their proximity to a client. Servers closer

to a client are preferred.

However, new chunks are still created randomly to ensure equal distribution, and rebalancing procedures

do not consider topology configuration. The distance between switches is categorized as 0 (same IP

addresses), 1 (different IP addresses but same switch number), or 2 (different switch numbers).

This topology feature can be effectively combined with chunk server labeling to optimize client

interactions with chunk servers, ensuring they read from or write to servers that are best suited for them,

like those on the same network switch.

Version: 4.0.8

Service configuration
Here are some fundamental guidelines:

The SaunaFS Master server is ideally run on a separate machine with an SSD.

A Chunk server should have at least one dedicated disk.

Avoid installing a metalogger on the same machine as the master server. Metaloggers are optional.

However, they can coexist with a chunk server.

Use shadow master servers to enhance data safety and allow for failover.

Before setting up SaunaFS, ensure each server has:

Proper network settings.

Suitable kernel settings.

Operating Systems
For the purposes of this documentation, we will assume you are on a Debian-based system, and

specifically Ubuntu. However, most of what applies here also applies to most Linux distributions. If not,

please contact us (See Contacts), we are also working on documentation for other OS-es.

Clients can be POSIX operating systems and Windows 11.

File systems
For Metadata servers:

Use fast SSDs with a fast file system like XFS.

Along with HW RAID mirroring or better e.g. RAID 10, RAID 6 etc.

Avalible space for metadata should be minimum 2 x RAM planned RAM usage on Metadata

server.

For Chunk servers: If using XFS, certain mount options like:

/dev/disk/by-id/ata-WDC_WUH721414ALE604_XXXXXX

/mnt/sfschunkservers/data/ata-WDC_WUH721414ALE604_XXXXXX xfs

https://docs.saunafs.com/administration-guide/network-setup

rw,noexec,nofail,nodev,noatime,nodiratime,largeio,allocsize=16777216,inode64

0 0

Adjust the scheduler for your file systems based on your hardware and needs.

Master
The master server holds all critical file system information.

copy default configuration files:

cp -vi /usr/share/doc/saunafs-master/examples/* /etc/saunafs/

if this is a new installation create empty metadata by by copying

/var/lib/saunafs/metadata.sfs.empty to /var/lib/saunafs/metadata.sfs

DANGER

This could be dangerous if it is NOT new/clean installation, since it is overriding potentially existing

metadata.

cp -iva /var/lib/saunafs/metadata.sfs.empty /var/lib/saunafs/metadata.sfs

And now you can configure the sfsmaster.cfg file with details like:

server personality,

listening addresses (for other services to connect to), ports,

user/group,

metadata storage location,

access time recording

...

For network permissions and access rights, use the sfsexports.cfg file.

Shadow master

The shadow master mirrors the master server's settings and keeps its meta database synchronized. Set

the shadow master's personality and master host address in the sfsmaster.cfg file:

Note that the files sfsexports.cfg, sfsgoals.cfg and sfstopology.cfg need to be the same as in the actual

master at all times.

Start the service like you would start master. See man sfsmaster.cfg and man sfsexports.cfg for more info.

Chunkserver
file sfshdd.cfg. must include paths/mountpoints to the disks you want to use in your storage system.

The chunkserver will assume these directories are dedicated drives and will calculate the total space and

usage from that.

By default, the master will try to balance chunks evenly between the chunkservers. If some of the

chunkservers are doing other non-SaunaFS related IO-operations, you may wish set the

ENABLE_LOAD_FACTOR option in sfschunkserver.cfg.

Metalogger
Metalogger helps keep a backup of the (shadow) master servers in case anything happens to them.

Without this, if all master and shadow’s die, all data is lost.

These settings need to be set in the sfsmetalogger.cfg

Start the metalogger with systemctl:

PERSONALITY = shadow
MASTER_HOST = <master ip>

MASTER_HOST=<master ip address/name>
MASTER_PORT=<master port>

systemctl enable --now saunafs-metalogger

See man sfsmetalogger[.cfg] for more details.

Version: 4.0.8

Replication
SaunaFS supports three replication modes.

Simple Goal Setup: Specify the number of copies for each file or directory chunk across chunk

servers.

EC Mode: Advanced erasure coding with configurable data and parity copies. Clients write quasi-

parallel to chunk servers, with up to 32 data and parity chunks.

NOTE

Replication settings are chunk-based, not node-based. For example, with five chunk servers in an

EC3+1 setup, chunks are evenly distributed, ensuring active use of all servers and balanced

distribution of data and parity chunks.

NOTE

To ensure repair procedures for broken servers, always have an extra chunk server beyond your

configured goals.

Configuring Goals
Goals are set in 'sfsgoals.cfg' managed by the master server. The file syntax is:

id name : label ...

Comments start with '#'. Up to 40 goals can be configured, with IDs from 1 to 40. Each file in the system

refers to a goal ID and replicates accordingly. 'sfsgoals.cfg' allows overriding default behaviors.

Goal Definitions
Id: Redefines the goal ID. Changing an ID affects files already assigned to it.

Name: A user-friendly name for interface tools like 'saunafs setgoal'. Names can be up to 32

alphanumeric characters.

List of Labels: Defines chunk server labels, with up to 32 alphanumeric characters. Each label

represents a chunk server where a file copy is maintained. The label '_' represents any chunk server.

Changing sfsgoals.cfg alters the replication behavior for files using that goal ID.

Example:

For more information:

Viewing and Setting Goals
View current goals via command line: saunafs-admin list-goals <master ip> <master

port> or web interface under 'Config' tab.

Set goals with: saunafs setgoal goal_name object . Use (-r) for directories. Append '+' or '-' to

the goal_name to increase or decrease “security” (i.e. goal_name id is higher or lower than id of the

current goal), respectively.

View goals with: saunafs getgoal object or saunafs getgoal -r directory for directories.

Setting up EC
EC goals are like standard goals but include EC ($ecM,K) definitions in 'sfsgoals.cfg'. EC supports up to

32 data or parity parts.

Examples in 'sfsgoals.cfg':

3 3 : _ _ _ # Three copies anywhere
8 not_important_file : _ # One copy
11 important_file : _ _
13 cached_on_ssd : ssd _
14 very_important_file : _ _ _ _

man sfsgoals.cfg

18 first_ec : $ec(3,1) # 3 data, 1 parity on all servers.

EC is the fastest replication mode, spreading writes across servers according to set goals.

Version: 4.0.8

Logs and logging
There are 3 types of logs in SaunaFS

Metadata logs
Each change in the filesystem is being logged Default location for those loges is at /var/lib/saunafs/

Below we can se an example of empty file creation:

And followed by making snapshot of this emplty file:

#root@tst1-builder-01 /var/lib/saunafs # ls -lah /var/lib/saunafs/*log*
-rw-r----- 1 saunafs saunafs 241 Jan 4 13:42 /var/lib/saunafs/changelog.sfs
-rw-r----- 1 saunafs saunafs 13M Jan 3 02:04 /var/lib/saunafs/changelog.sfs.35
-rw-r----- 1 saunafs saunafs 25M Jan 3 01:59 /var/lib/saunafs/changelog.sfs.36
-rw-r----- 1 saunafs saunafs 427 Jan 2 19:30 /var/lib/saunafs/changelog.sfs.42
-rw-r----- 1 saunafs saunafs 18K Jan 2 18:59 /var/lib/saunafs/changelog.sfs.43
-rw-r----- 1 saunafs saunafs 37M Dec 23 06:19 /var/lib/saunafs/changelog.sfs.50

tail /var/lib/saunafs/changelog.sfs

tail /var/lib/saunafs/changelog.sfs

This logging is giving a powerful ability to apply Realtime or offline analysis (e.g security, usage,

anomalies, etc)

Thosche changelog files also include checksum (which could be use to determine manipulation of logs

data) used to detect potential errors in logs,

Copy of those changelogs can be stored in dedicated meta logger server in cluster for having a copy.

Regular syslog (journalctl)
In the confiuration file for every server/daemon/service

/etc/saunafs/sfsmaster.cfg

We have posibility to define syslog ID

5504749: 1704375765|CREATE(1,example_empty_file,f,436,1008,1997,0):3145732
5504750: 1704375765|ACQUIRE(3145732,4)
5504751: 1704375765|ATTR(3145732,436,1008,1997,1704375765,1704375765)
5504752: 1704375765|CHECKSUM(4.0.0):12158089599274070817
5504753: 1704375786|RELEASE(3145732,4)
✓ (0.00080s) 13:46:11

5504749: 1704375765|CREATE(1,example_empty_file,f,436,1008,1997,0):3145732
5504750: 1704375765|ACQUIRE(3145732,4)
5504751: 1704375765|ATTR(3145732,436,1008,1997,1704375765,1704375765)
5504752: 1704375765|CHECKSUM(4.0.0):12158089599274070817
5504753: 1704375786|RELEASE(3145732,4)
5504754: 1704376084|CLONE(3145732,1,3145733,example_empty_file.snapshot,0)

Default for master server is:

Client site operation logs (oplog)
In case we need to determine/monitor whtat is happening in particular mountpoint we can access

For example

Example touch

SYSLOG_IDENT = sfsmaster

sudo journalctl --since "3 minutes ago" | grep sfsmaster

sudo cat /<MOUNT_POINT>/.oplog

sudo grc cat /mnt/sfs.208.29421/.oplog
1704376778 01.04 13:59:38.838828: uid:0 gid:2147483651 pid:395006 cmd:open
(4294967281) (internal node: OPLOG): OK (1,0)
1704376778 01.04 13:59:38.838934: uid:0 gid:2147483651 pid:395006 cmd:getattr
(4294967281) (internal node: OPLOG): OK (3600,[-r-------
-:0100400,1,0,0,0,0,0,0])

touch example_empty_file

1704376852 01.04 14:00:52.800360: uid:0 gid:2147483651 pid:396488 cmd:getattr
(1): OK (1.0,[drwxrwxrwx:0040777,4,0,0,1704376839,1704376084,1704376084,0])
1704376852 01.04 14:00:52.804180: uid:0 gid:2147483651 pid:396490 cmd:lookup
(1,example_empty_file): OK (0.0,3145732,1.0,[-rw-rw-r-
-:0100664,1,1008,1997,1704375765,1704375765,1704375765,0])
1704376852 01.04 14:00:52.804646: uid:0 gid:2147483651 pid:396490 cmd:getxattr
(3145732,system.posix_acl_access,4096): Attribute not found
1704376852 01.04 14:00:52.805048: uid:0 gid:2147483651 pid:396490 cmd:open
(3145732): OK (0,0)
1704376852 01.04 14:00:52.805231: uid:0 gid:0 pid:396490 cmd:flush (3145732): OK
1704376852 01.04 14:00:52.805663: uid:0 gid:2147483651 pid:396490 cmd:setattr
(3145732,0x1B0,[---------:00000,0,0,1704376852,1704376852,0]): OK (1.0,[-rw-rw-
r--:0100664,1,1008,1997,1704376852,1704376852,1704376852,0])
1704376852 01.04 14:00:52.805764: uid:0 gid:0 pid:396490 cmd:flush (3145732): OK
1704376852 01.04 14:00:52.805817: cmd:release (3145732): OK

Version: 4.0.8

Basic checks
Check if your nodes are all reachable by IP address as well as by hostname

Check if your network has the right throughput

Check if your disks are all working and do not report errors

Check your Chunkservers for:

Broken Disks

Slow Disks

permissions on your directories (the user which is running the chunkserver must be the owner of

the directories)

network performance to other chunkserver

network performance to master server

network performance to clients

Check your license files for the correct name and location

Check your log files for errors. SaunaFS is very talkative and reports a lot.

Version: 4.0.8

Check the speed of your network
interface
To verify what your network interface is set to, you can just use the ethtool program:

ethtool <interface>

Version: 4.0.8

Checking the throughput of your
network
The best tool to verify if your network throughput is according to what you think it is would be the iperf

tool. iperf allows you to verify the throughput between two machines. It is available for all POSIX

compliant systems and is quite easy to use.

For more information about iperf, please check out https://iperf.fr/.

https://iperf.fr/

Version: 4.0.8

Dev Guide

Development Environment
Currently, we target 22.04 Ubuntu LTS for releases. However, we don't recommend using your host

machine for development (due to the fact that setting up tests modifies your host system and requires

root privileges). Instead, we recommend using a virtual machine to develop and test SaunaFS. In the

future, we will probably provide a Docker image for development instead.

You can use any virtualisation software you like.

Editors
You can use any editor you like. The core team uses various editors, including Visual Studio Code, CLion

and Vim.

Building

Sharing the source code with the VM

If you want to use the editors on your host machine, you should share the source directory with the VM

and do your building/testing/running on the VM. You'll need to check your virtualisation software's

documentation for how to do this.

For example, in KVM you can add a filesystem passthrough in virt-manager or by editing the VM XML file

directly. If using virt-manager, you should use the virtiofs driver, the source path should be the path to the

SaunaFS source code on your host machine, and target path something like saunafs.

You can then mount the shared directory with the following command:

sudo mkdir /opt/saunafs
sudo mount -t virtiofs saunafs /opt/saunafs

To mount every time you start the VM, add the following line to /etc/fstab:

Dependencies/Installing Tests

You can use the following script to both install the dependencies and the testing environment:

You can also run the script without arguments, and it will explain what it does.

Compiling

We use CMake for building. There are some useful options you can pass to CMake:

DCMAKE_COMPILE_COMMANDS=ON : This will generate a compile_commands.json file which is useful

for editors and tools to understand the build system. It should work fine on the host machine, as long

as you have the necessary dependencies installed on the host (otherwise, it might show missing

dependencies). Check the previous script code for the dependencies for Ubuntu LTS 22.04.

DENABLE_TESTS=1 : This will enable building the tests.

DENABLE_DOCS=1 : This will enable building the documentation.

In the source directory, you can run the following commands to build the project:

The number of jobs you should use for make depends on the number of cores your VM has (i.e if you have

less than 4 cores, you should use less than 4 jobs) and the amount of RAM you have. If you use too many

jobs, you could run out of RAM pretty quickly. For example, with 32 cores, you could use 32 jobs, but

you'll need about 100GB of RAM.

After make finishes, you can install SaunaFS with the following command:

saunafs /opt/saunafs virtiofs defaults 0 0

tests/setup_machine.sh /mnt/hda /mnt/hdb /mnt/hdc /mnt/hdd /mnth/hde /mnt/hdf

mkdir build && cd build
cmake -DCMAKE_COMPILE_COMMANDS=ON -DENABLE_TESTS=1 -DENABLE_DOCS=1 ..
make -j4 # Generally 4 is a safe option, see below

You can also sudo make -j$(jobs) install to both build and install in one command. However, you'll

need to use sudo every time you want to build.

Configuring SaunaFS/tests

We use a mixture of unit and integration tests. The integration tests require some more setup. Assuming

you ran the setup_machine.sh script, you need to edit the /etc/saunafs_tests.conf file, uncomment the

part with SAUNAFS_ROOT, and set that to /usr/local/ (or wherever you installed SaunaFS).

You also need to setup networking a bit. Currently SaunaFS forbids communication with master on

localhost. You need to add a new IP address to your loopback interface. You can do this with the following

command:

To make this change permanent, you can add the following line under ethernets in /etc/network/00-

installer-config.yaml (if you installed Ubuntu Server):

Generate the configuration with the following command:

Restart the network service with the following command:

Verify localhost works with both 127.0.0.1 and 10.33.33.33 with ping.

You should then set sfsmaster in /etc/hosts to that IP address for ease of remembering the IP address.

sudo make install

sudo ip addr add 10.33.33.33 dev lo

 lo:
 addresses:
 - 10.33.33.33/8

sudo netplan --debug generate

sudo systemctl restart systemd-networkd

Running the tests

Running unit tests is easy, in the build directory after building, run the following command:

For the integration tests, there are test suites available. These are managed by gtest and are simple

shell scripts. You can see all of the test suites in the tests/test_suites directory, but the most important

one is the SanityChecks suite. This should be run to ensure nothing is broken and before submitting a

pull request.

To run the SanityChecks suite, you can run the following command:

Others of note are the LongSystemTests and the ShortSystemTests . These are run by the CI system.

The ShortSystemTests take about an hour to run, and the LongSystemTests can take up to a day.

Submitting Pull Requests
See the CONTRIBUTING.md file for more information on how to submit pull requests.

Git specific settings

Code Style

We use clang-format to enforce a consistent code style. You can run something like git-clang-format to

format your changes before committing.

10.33.33.33 sfsmaster

src/unittests/unittests

saunafs-tests --gtest_filter="SanityChecks.*"

git add <your changes>
git clang-format --style=file

Ignore revisions

Sometimes you want to ignore certain revisions when running git blame (i.e large rename commits). You

can use the .git-blame-ignore-revs file to do this.

git config blame.ignoreRevsFile .git-blame-ignore-revs

Version: 4.0.8

Introduction
This section provides an overview of the licensing terms for SaunaFS software, Windows Client software

and this documentation itself, all licensed separately under different licensing formats.

Documentation licensing information
SaunaFS Documentation is licensed separately from SaunaFS and is covered by the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

The full text of the license can be found at https://creativecommons.org/licenses/by-nc-nd/4.0/.

This documentation may be used for non-commercial purposes only and may not be modified or

distributed without prior permission from the copyright holder. When using this documentation, you must

include the original licensing information and provide attribution to the copyright holder. When you

redistribute this documentation, please maintain the original licensing information, and distribute this

notice along with the documentation.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: 4.0.8

Windows Client licensing
information
The software component "Windows Client" is not open source and is subject to a commercial license. To

obtain a license to use Windows Client, please contact Leil Storage OÜ at contact@leil.io or using the

contact information provided on our website at https://leil.io

mailto:contact@leil.io
https://leil.io/

Version: 4.0.8

SaunaFS (except its
documentation and Windows
Client) licensing information
This software is released under the terms of the GNU General Public License version 3 (GPLv3), which

can be found at https://www.gnu.org/licenses/gpl-3.0.html. This software is free software: you can

redistribute it and/or modify it under the terms of the GNU General Public License as published by the

Free Software Foundation, either version 3 of the License, or (at your option) any later version. This

software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details. When you redistribute this software, please maintain the original licensing

information, and distribute this notice along with the software. (GPLv3): This subsection provides a

detailed description of the remaining components of your software, which are licensed under the GPLv3

license. This subsection should include the full text of the GPLv3 license, as well as any additional terms

or conditions that apply to the software as a whole.

https://www.gnu.org/licenses/gpl-3.0.html

